Organocatalytic One-Pot Oxidative Cleavage of Terminal Diols to Dehomologated Carboxylic Acids

2012 Vol. 14, No. 19 5006–5009

ORGANIC LETTERS

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aobayama, Sendai 980-8578, Japan

m-shibu@ps.nagoya-u.ac.jp; y-iwabuchi@m.tohoku.ac.jp

Received August 1, 2012

The organocatalytic one-pot oxidative cleavage of terminal 1,2-diols to one-carbon-unit-shorter carboxylic acids is described. The combination of 1-Me-AZADO (cat.), NaOCI (cat.), and NaCIO₂ caused smooth one-pot oxidative cleavage under mild conditions. A broad range of substrates including carbohydrates and *N*-protected amino diols were converted without epimerization. Terminal triols and tetraols respectively underwent cleavage of their C-2 and C-3 moieties to afford their corresponding two- and three-carbon-unit-shorter carboxylic acids.

The 1,2-diol is a useful structural motif in organic synthesis that offers flexible access to various functional groups, such as α -hydroxy-carbonyl^{1,2} or α -dicarbonyl

(2) (a) Tanaka, K.; Watanabe, M.; Ishibashi, K.; Matsuyama, H.; Saikawa, Y.; Nakata, M. *Org. Lett.* **2010**, *12*, 1700–1703. (b) Jung, M. E.; Yoo, D. *Org. Lett.* **2011**, *13*, 2698–2701.

(3) Gaonzález, A. G.; Mendoza, J. J.; Ravelo, A. G.; Luis, J. G. J. Org. Chem. 1989, 54, 4522–4524.

10.1021/ol3021429 © 2012 American Chemical Society Published on Web 09/19/2012

compounds,³ epoxides,⁴ alkenes,⁵ and others^{6,7} on the basis of judicious choices of reagents and conditions. Because of our research interest in developing nitroxyl radical/oxoammonium salt-catalyzed alcohol oxidation processes,^{8,9} we examined the applicability of TEMPO oxidation to the selective conversion of 1,2-diols to 2-hydroxy acids using the primary alcohol selectivity of TEMPO.^{1a,c} During our experimentation, we found that terminal 1,2-diols are cleanly converted to dehomologated carboxylic acids via the oxidative decarboxylation of α -keto-carboxylic acids.

[†]Present address: Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.

⁽¹⁾ For selected examples, see: (a) Gruner, S. A. W.; Truffault, V.; Voll, G.; Locardi, E.; Stockle, M.; Kessler, H. *Chem.—Eur. J.* **2002**, *8*, 4365–4376. (b) Tanaka, H.; Sawayama, A. M.; Wandless, T. J. *J. Am. Chem. Soc.* **2003**, *125*, 6864–6865. (c) Liang, S.; Xu, Z.; Ye, T. *Chem. Commun.* **2010**, *46*, 153–155. (d) Soulé, J. F.; Mathieu, A.; Norsikian, S.; Beau, J.-M. *Org. Lett.* **2010**, *12*, 5322–5325. (e) Yu, L.-F.; Hu, H.-N.; Nan, F.-J. *J. Org. Chem.* **2011**, *76*, 1448–1451.

^{(4) (}a) Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2001, 3, 953–955. (b) Takahashi, S.; Ogawa, N.; Koshino, H.; Nakata, T. Org. Lett. 2005, 7, 2783–2786. (c) Smith, A. B., III; Kim, D.-S. Org. Lett. 2005, 7, 3247–3250. (d) Smith, A. B., III; Dong, S.; Fox, R. J.; Brenneman, J. B.; Vanecko, J. A.; Maegawa, T. Tetrahedron 2011, 67, 9809–9828.

^{(5) (}a) Gurjar, M. K.; Maheshwar, K. J. Org. Chem. 2001, 66, 7552–7554. (b) Abdelkafi, H.; Herson, P.; Nay, B. Org. Lett. 2012, 14, 1270–1273.

^{(6) (}a) Lu, X.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2004, 69, 5433–5438.
(b) Sharma, A.; Gamre, S.; Chattopadhyay, S. Tetrahedron Lett.
2007, 48, 633–634.
(c) Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 504–506.

^{(7) (}a) Akiyama, K.; Yamamoto, S.; Fujimoto, H.; Ishibashi, M. *Tetrahedron* **2005**, *61*, 1827–1833. (b) Suenaga, K.; Hoshino, H.; Yoshii, T.; Mori, K.; Sone, H.; Bessho, Y.; Sakakura, A.; Hayakawa, I.; Yamada, K.; Kogoshi, H. *Tetrahedron* **2006**, *62*, 7687–7698. (c) Yadav, J. S.; Rao, T. S.; Ravindar, K.; Reddy, B. V. S. *Synlett* **2009**, 2828–2830.

^{(8) (}a) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412–8413. (b) Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun. 2009, 1739–1741. (c) Shibuya, M.; Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. J. Org. Chem. 2009, 74, 4619– 4622. (d) Tomizawa, M.; Shibuya, M.; Iwabuchi, Y. Org. Lett. 2009, 11, 1829–1831. (e) Hayashi, M.; Sasano, Y.; Nagasawa, S.; Shibuya, M.; Iwabuchi, Y. Chem. Pharm. Bull. 2011, 59, 1570–1573. (f) Shibuya, M.; Osada, Y.; Sasano, Y.; Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc. 2011, 133, 6497–6500. (g) Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.; Nagahama, N.; Iwabuchi, Y. Synthesis 2011, 3418–3425.

^{(9) (}a) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73, 4750–4752. (b) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett. 2008, 10, 4715–4718.

We now describe the first organocatalytic one-pot oxidative cleavage of terminal 1,2-diols to dehomologated carboxylic acids with a wide range of substrate applicabilities, featuring the combined use of cat.1-Me-AZADO/ cat.NaOCl/NaClO₂.

Nitroxyl-radical-catalyzed alcohol oxidation has attracted much attention owing to its versatile utility supported by diverse sets of catalyst and terminal oxidant availabilities.^{10–13} 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO, **1**) is a representative of this type of catalyst. A less hindered class of nitroxyl radical 2-azaadamantane *N*-oxyls (AZADOs) (**2**, **3**),^{8a,b,f,g} 9-azabicyclo[3.3.1]-nonane *N*-oxyl (ABNO) (**4**),^{8c} and 9-azanoradamantane *N*-oxyl (Nor-AZADO) (**5**)^{8e} have been developed as more reactive nitroxyl radical catalysts (Figure 1).

Figure 1. Structures of nitroxyl radicals.

In light of the inherent stereodiscriminable properties of TEMPO,¹ we first evaluated the possibility of TEMPOcatalyzed oxidation to conduct the selective oxidation of 1,2-diols to their corresponding 2-hydroxy acids, employing cat.NaOCl/NaClO₂ (Zhao's procedure),^{13b,d} which offers an efficient one-pot oxidation of primary alcohols to their corresponding carboxylic acids. While attempting the oxidation of 1,2-diol **6a** under Zhao's conditions, we unexpectedly found that smooth and clean oxidative C–C cleavage from the 2-hydroxy acid **6b** to the one-carbon-unit-shorter carboxylic acid **6c** takes place (Scheme 1).

At the outset of this reaction, only 2-hydroxy acid was detected by analytical TLC. As the reaction approached completion, C–C bond cleavage took place exclusively to afford the one-carbon-unit-shorter carboxylic acid **6c** without any intermediate other than the 2-hydroxy acid **6b** being detected. One report including a nitroxyl-radical-catalyzed direct cleavage reaction from 1,2-diol to dehomologated

(10) (a) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis
1996, 1153–1174. (b) Vogler, T.; Studer, A. Synthesis 2008, 1979–1993. (c)
Bobbitt, J. M.; Brockner, C.; Merbouh, N. Org. React. 2009, 74, 103–424.
(11) (a) Dugger, R. W.; Ragan, J. A.; Ripin, D. H. B. Org. Process
Res. Dev. 2005, 9, 253–258. (b) Caron, S.; Dugger, R. W.; Ruggeri, S. G.;

Ragan, J. A.; Ripin, D. H. B. *Chem. Rev.* **2006**, *106*, 2943–2989. (c) Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. **2010**, *14*, 245–251.

carboxylic acid has been published;¹⁴ however, it focused on the development of a column-flow alcohol oxidation system using immobilized TEMPO with few examples of oxidative cleavage. Stark et al. have also recently reported TPAP-catalyzed vicinal diol cleavage to carboxylic acids as a new synthetic method.¹⁵ Because of the efficiency and mildness of the nitroxyl-radical-catalyzed method as well as its eco- and user-friendliness, we thought it useful to clarify the scope of nitroxyl-radical-catalyzed oxidative cleavage.¹⁶ Furthermore, highly active AZADOs could expand the scope of TEMPO-catalyzed oxidative cleavage.

Comparing 1-Me-AZADO (3) with TEMPO (1), we examined the substrate applicability of this method (Table 1).^{17–19} As expected, the simple 1,2-diols **6a**, **7a**, and **8a** efficiently underwent the desired reaction using either catalyst. The phenylacetylene **9a** yielded its corresponding one-carbon-unit-shorter carboxylic acid **9c** accompanied by less than 5% benzoic acid under the 1-Me-AZADO-catalyzed conditions, whereas 12% benzoic acid was obtained under the TEMPO-catalyzed conditions (entry 4). For the entries 5–7, 9, and 10, the differences between 1-Me-AZADO and TEMPO became clear. The conversions from 2-hydroxy acids to one-carbon-unit-shorter carboxylic acids were more efficiently promoted under the 1-Me-AZADO-catalyzed conditions than under

Scheme 1. Unexpected Oxidative Cleavage

ОН Рh ОН	TEMPO (1) (10 mol %) NaOCI (10 mol %) NaCIO ₂ (3 equiv) MeCN, buffer, rt	Ph OH +		Ph OH
		4 h	26%	71%
		9 h	0%	96%

TEMPO-catalyzed conditions. Thus, the corresponding 2-hydroxy acids were obtained after 24 h under the TEMPO-catalyzed conditions in moderate yield (the yields are shown in Table 1). No epimerization of an adjacent stereocenter was detected under either set of catalyst-catalyzed conditions (entries 5–10). Note that the methoxy diol **13a** and the *N*-protected amino diols **14a** and **15a** efficiently underwent one-pot oxidative cleavage without racemization under the 1-Me-AZADO-catalyzed conditions (entries 8–10).^{20,21} The optically active diols **13a** and **14a** were prepared by Sharpless asymmetric epoxidation and acid-catalyzed nucleophilic ring opening

^{(12) (}a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem.
1987, 52, 2559–2562. (b) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974–6977. (c) Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Org. Lett. 2000, 2, 1173–1175. (d) Miller, R. A.; Hoerrner, R. S. Org. Lett. 2003, 5, 285–287. (e) Liu, R. H.; Liang, X. M.; Dong, C. Y.; Hu, X. Q. J. Am. Chem. Soc. 2004, 126, 4112–4113.

^{(13) (}a) Epp, J. B.; Widlanski, T. S. J. Org. Chem. 1999, 64, 293–295. (b)
Zhao, M. Z.; Li, J.; Mano, E.; Song, Z. G.; Tschaen, D. M.; Grabowski,
E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64, 2564–2566. (c) Zanka, A. Chem.
Pharm. Bull. 2003, 51, 888–889. (d) Zhao, M. M.; Li, J.; Mano, E.; Song,
Z. J.; Tschaen, D. M. Org. Synth. 2005, 81, 195–203.

⁽¹⁴⁾ Tanaka, H.; Chou, J. Y.; Mine, M.; Kuroboshi, M. Bull. Chem. Soc. Jpn. 2004, 77, 1745–1755.

⁽¹⁵⁾ Schmidt, A.-K. C.; Stark, C. B. W. Org. Lett. 2011, 13, 5788-5791.

⁽¹⁶⁾ Selected recent examples of two-step transformation of 1,2-diol to one-carbon-unit-shorter carboxylic acid: (a) Parker, K. A.; Lim, Y. H. J. Am. Chem. Soc. 2004, 126, 15968–15969. (b) Koizumi, Y.; Kobayashi, H.; Wakimoto, T.; Furuta, T.; Fukuyama, T.; Kan, T. J. Am. Chem. Soc. 2008, 130, 16854–16855. (c) Ramana, C. V.; Khaladkar, T. P.; Chatterjee, S.; Gurjar, M. K. J. Org. Chem. 2008, 73, 3817–3822. (d) Mohapatra, D. K.; Sahoo, G.; Ramesh, D. K.; Rao, J. S.; Sastry, G. N. Tetrahedron Lett. 2009, 50, 5636–5639. (e) Lu, Y.; Woo, S. K.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 13876–13879. (f) Zhang, Y. A.; Rohanna, J.; Zhou, J.; Iyer, K.; Rainier, J. D. J. Am. Chem. Soc. 2011, 133, 3208–3216.

from the corresponding allylic alcohol (see Supporting Information). These results showcase the use of this method for preparing optically active α -amino acids and α -alkoxy acids. The piperidinodiol **15a** was also prepared from D-mannitol according to Kamal's report,²² which indicates the use of this one-pot oxidative cleavage as a preparation method for α -amino acids from a chiral pool. Unfortunately, **16a** having a sensitive trisubstituted olefin under oxidative conditions and the internal diol **17a** did not afford the desired products.

To investigate the applicability of this one-pot oxidative cleavage to terminal triols and tetraols, we examined the reactions of the triol **18** and the tetraol **20** (Scheme 2). Twoand three-carbon dehomologations effectively proceeded to afford the corresponding carboxylic acids.

To probe the reaction mechanism, we examined the reactivity of oxoammonium salts (1-Me-AZADO⁺X⁻), which are active species of 1-Me-AZADO (3), NaOCl,²³ and NaClO₂,^{24,25} toward the 2-hydroxy acid **7b** and the keto acid **7e** (Scheme 3). Neither 1-Me-AZADO⁺Cl⁻ nor NaOCl-NaClO₂ caused the C–C bond cleavage of the 2-hydroxy acid **7b** (eqs 1, 2). Although 1-Me-AZADO⁺Cl⁻ also did not cause the C–C bond cleavage of the keto acid **7e**, NaClO₂ did promote the C–C bond cleavage of the keto acid **7e** (eqs 3, 4). These results show that C–C bond

(17) AZADO (2) also smoothly catalyzed one-pot oxidative cleavage. By mixing the hydroxy ketone 7f and the hydroxyamine of AZADO (AZADOH) and NaClO₂, neither C–C bond cleavage nor alcohol oxidation occurred, which indicates that the oxidation of a secondary alcohol prior to a primary alcohol could shut down the catalytic cycle (eq 2). NaOCl generated from NaClO₂ by the oxidation of an aldehyde to a carboxylic acid is necessary for the regeneration of oxoammonium species in this reaction (eq 1). Thus, we used 1-Me-AZADO (3) because of its moderate bulkiness as a catalyst.

(18) The catalytic efficiency of 1-Me-AZADO is shown in the Supporting Information (Table S1). 7a effectively underwent the one-pot oxidative cleavage with 1 mol % 1-Me-AZADO.
(19) In our previous study,^{8b} sometiomes one-pot oxidation of

(19) In our previous study,⁸⁰ sometiomes one-pot oxidation of primary alcohols to carboxylic acids suddenly stopped in low ion concentration buffter (<0.1 M ion concentration) accompanied by acidification of the reaction mixture. It was confirmed that one-pot oxidation proceeded in 1 M phosphate buffer with high reproducibility.

(20) **13a** and **14a** were prepared from the corresponding 90% ee 2,3epoxy alcohol. The enantiomeric excess of **13c** obtained from either the 1-Me-AZADO- or TEMPO-catalyzed reaction was determined to be 90% ee. The enantiomeric excess of **14c** obtained from the 1-Me-AZADO (3) catalyzed reaction was also determined to be 90% ee, although the TEMPO (1) catalyzed condition afforded 87% ee **14c**.

(21) Optically pure **15c** was obtained from chiral **15a** under either the 1-Me-AZADO (**3**)- or TEMPO (**1**)-catalyzed conditions.

(22) Kamal, A.; Vangala, S. R. Tetrahedron 2011, 67, 1341-1347.

(23) Veisi, H. Synlett 2007, 2607–2608 and references cited therein.

(24) de Ferreira, M. L. Synlett 2011, 5, 730–731 and references cited therein.

(25) Mohamed, M. A.; Yamada, K.; Tomioka, K *Tetrahedron Lett.* 2009, *50*, 3436–3438.

 Table 1. Scopes of TEMPO- and 1-Me-AZADO-Catalyzed

 One-Pot Oxidative Cleavages^a

entry	diol	product	time (h) yield (%) ^b 1 -Me-AZADO TEMPO	
1	OH Ph 6a	Ph CO ₂ H	2.5 9	96 96
2	Вzo ()6 ОН 7a ОН	Bz0 () ₆ CO ₂ H	3 3	98 100
3	Ph OH OH 8a	PhCO ₂ H 8c	24 24	90° 85°
4	Ph OH 9a OH	PhCO ₂ H 9c	3 20	83^c 78 ^c
5		BnO CO ₂ H	5 24	89^c 33(64) ^{c.d}
6	OMe 11a	O CO ₂ H	2 24	79^c 55(22) ^{c,d}
7	О О О О Н 12а		1 72	91° 25(<41) ^{c,d}
8	OMe Ph ↓↓ ○H 13a	OMe Ph	2 8	98^c 96 ^c
9	NHBoc Ph → 3 <u>÷</u> OH OH 14a	NHBoc Ph → CO ₂ H	5 24	100^c 48(35) ^{c,d}
10	N ^{VI} Boc OH 15a	N ^{V,} CO ₂ H Boc 15c	3 24	82^{c,e} 50(28) ^{c,d,e}
11	ОН ОН ОН	Λ	24 -	0 -
12)	24 -	0 -

^{*a*} Conditions: 10 mol % nitroxyl radical, 10 mol % NaOCl, and 3 equiv of NaClO₂ were added in MeCN and buffer (pH 6.8, 1.0 M) at rt. ^{*b*} Isolated yield. ^{*c*} Carboxylic acids were isolated as methyl esters after treatment with CH₂N₂. ^{*d*} The numbers in paretheses are the yields of the corresponding 2-hydroxy acids. ^{*e*} 6 equiv of NaClO₂ were used.

Scheme 3. Reactivity of Oxoammnium Salts, NaOCl, and NaClO₂

cleavage of 2-hydroxy acids is caused by $NaClO_2$ via the keto acid. Next, to investigate the difference in reaction rate between the 1-Me-AZADO-catalyzed and TEMPO-catalyzed conditions, the 2-hydroxy acid **10b** was treated with either 1-Me-AZADO⁺Cl⁻ or TEMPO⁺Cl⁻. **10b** was completely oxidized to the corresponding keto acid **10e** by 1-Me-AZADO⁺Cl⁻ within 1 h (eq 5). On the other hand, 56% 2-hydroxy acid **10b** was recovered after treatment with TEMPO⁺Cl⁻ for 1 h (eq 6). These results indicate that the difference in reaction rate between 1-Me-AZADO (**3**)-catalyzed and TEMPO (**1**)-catalyzed conditions reflects the rate of oxidation from the 2-hydroxy acid to the keto acid.

With the above results taken into consideration, an overall plausible reaction mechanism is shown in Scheme 4. 1,2-Diols are oxidized to 2-hydroxy acids which are the only intermediates detectable by analytical TLC under the reaction conditions. Immediately after 2-hydroxy acids are oxidized to keto acids by the oxoammonium species, the C–C bond is smoothly excised by NaClO₂. The one-pot oxidative cleavage is completed in four oxidative steps: oxidation of primary alcohols to aldehydes, oxidation of aldehydes to carboxylic acids, oxidation of hydroxyl acids to keto acids, and oxidative cleavage of keto acids to one-carbon-unit-shorter carboxylic acids.

In summary, we have developed cat.1-Me-AZADO/cat. NaOCl/NaClO₂ for the useful one-pot oxidative cleavage reaction of 1,2-diols to dehomologated carboxylic acids under mild conditions. 1-Me-AZADO (3) more effectively catalyzed the reaction than TEMPO (1). Sensitive groups such as double bonds, triple bonds, acetonides, and *N*-Boc groups were compatible with these reaction conditions. This one-pot oxidative cleavage proceeded without the epimerization of adjacent stereocenters. Furthermore, this method was applicable to terminal triols and tetraols. This reaction will be a useful transformation for 1,2-diols and will also expand the use of nitroxyl radical catalysts.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Advanced Molecular Transformations by Organocatalysis" from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by a Grant-in-Aid for Scientific Research (B) (No. 21390001), and by a Grant-in-Aid for Young Scientists (A) (No. 23689001) from the Japan Society for the Promotion of Science (JSPS).

Supporting Information Available. General experimental procedure, characterization data, and copy of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.